

Mushroom Nursery

An autonomous environment for enhanced primordia formation and fruit body development of mushroom cultures.

University of Central Florida Department of Electrical Engineering and Computer Science

Group #5 John Farriss, CpE Mardochee Cajuste, CpE David Booth, CpE

Motivation

- We enjoy Mushrooms because they're delicious and healthy.
- But sadly most grocery store don't offer gourmet varieties.
- This is because gourmet mushrooms are hard to grow in bulk and have a short shelf life.

Project Goals

- Let users easily grow their favorite mushrooms at home.
- Build a self maintaining mushroom nursery.
- Give consumers access to a large variety of fresh mushrooms.

Overview

- Table top nursery that monitors and controls the grow environment for ideal conditions.
- WiFi connected controller that sends sensor data to a web server.
- Web App that allows for remote monitoring & management.

Project Design

- Used House of Quality process to find most important features.
- Circuits prototyped with a breadboard.
- Controllers evaluated with Development Boards.
- PCB designed using Easy EDA, and assembled by PCBWay.
- Software and Hardware unit tested.

Core Specifications

1	User can manually enable humidifier, fans, and lights on the web app, and the nursery will update within 60 seconds.
2	Ability to get updated temperature and humidity readings on the web app at least every 60 seconds.
3	Ability to raise internal relative humidity from room level to 80% within 10 Minutes.
4	Ability to achieve internal relative humidity of at least 90%.
5	Nursery can automatically maintain 85-90% humidity, and exhaust CO2 every minute.
6	User receives an alert within 5 minutes of the humidity falling below 70%.

System Overview

Controller

Component	Cost	Size (mm)	Internal Flash	Internal WiFi	GPIOs
Microchip SAMD21	\$3.53	7 x 7 x 0.5	256 KB	No	38
Microchip ATSAMW25	\$12.05	15 x 34 x 2	256 KB	2.4 GHz	15
Espressif ESP32 WROOM	\$3.80	18 x 25 x 3	4 MB	2.4 GHz	21

Controller

- WROOM-32D packaging.
- Protective metal casing with antenna for the WiFi module.
- 32 bit dual core processor.

ESP32

Internal Flash Memory	4MB and 16 MB available
Wireless Connectivity	2.4 GHz WiFi supporting 802.11 b/g/n Bluetooth 4.2 including Bluetooth LE
Number of GPIOs	21 including DACs and ADCs
Wired Protocols	UART, SPI, I2C, I2S
Operating Voltage	3.3 V

Schematic

PCB Design

- 2 Layer PCB
- Wider Traces on MOSFET connections
 - Better thermostability
- Troubleshooting breakouts.
- UART breakouts.
- Boot and Reset buttons.

Board & Sensor Power Solution

- AC-DC Wall adapter connected via barrel jack.
- Regulating up to 15V input down to 3.3V.
- Controller and Sensors run on 3.3 V.

Power Regulator

Component	Cost	Size (mm)	Max. Input (V)	Max. Current (mA)	Accuracy	Max. Temp
Diodes Inc. AP2112K	\$0.47	3 x 1.6 x 1	6	600	1.5 %	85 C
STMicroelectronics	\$0.46	2.5 x 6.6 x 6	15	800	2 %	125 C
Texas Instruments TPS709	\$1.12	1.4 x 3 x 1	30	150	2 %	125 C

LD1117 Operating Temperature estimated at 49 C.

Devices

- Devices are powered with AC-DC Wall Adapters.
- They are connected via screw terminals.
- Controlled via MOSFETs.

MOSFETs

Component	Cost	Size (mm)	Max. Voltage (V)	Max. Current (A)	Max. Temp (C)
Fairchild FQP30N06L	\$0.95	10x14x4.5	60	32	175
ON Semiconductor FDMS3660S	\$1.20	6x5x1.1	30	30	150
STMicroelectronics STD4N52K3	\$1.14	10x6.5x2	525	3.8	150

MOSFET Temperature

	Max. D-S Voltage	Max. Current	Max. Temperature
FQP30N06L	60 V	32 A @25C 22 A @100C	175 C
	Operating Voltage	Max. Current	Junction Temp.
Light	12 V DC	1.2 A	28 C
Fan	5 V DC	280 mA	25 C
Humidifier	24 V DC	700 mA	26 C

Humidification Solution

- Mushrooms require high levels of humidity (80-100% RH).
 - Exact levels depends on Mushroom variety.

The user is able to set the desired humidity level via the web app.
Or select pre-configured mushroom profile.

• Controller reads humidity inside nursery, using humidity sensor.

Humidification Methods

Option	Effectiveness	Method	Implementation Cost
Evaporative	Low	Wick + Fan	Low
Vaporization	High	Boiling	High
Ultrasonic	High	Atomizer + Fan	Low

- Ultrasonic atomizer is placed within water chamber.
- Fan blows the humidified air into the growing chamber.

Humidification Solution

- Internal humidity level is monitored and humidifier engaged as needed.
- Water chamber needs to be refilled periodically.

Atomizer

AGPTek Ultrasonic Disc Atomizer					
Voltage	24 V DC				
Max Current	700 mA				
Water consumption	200-400 ml / hour				
Size	3.5 cm diameter 4 cm tall				
Cost	\$12.99				

Daylight Solution

- Minor Lighting helps with color and flavor development.
- LED light mounted inside the nursery.
- Controller will automatically turn on and off lights inside the chamber.
- User can manually override these options via the web app.

IP65 LED strip					
Voltage	12 V DC				
Max Current	1.2 A				
Wavelength	450-500 nm				
Cost	\$12.99				

Ultraviolet Lighting Solution

- Ultraviolet light boosts Vitamin D content in mushroom.
- LED light mounted inside the nursery.
- User can manually enable or disable via app.

IP65 LED strip					
Voltage	12 V DC				
Max Current	1.2 A				
Wavelength	380-400 nm				
Cost	\$12.99				

Housing Construction

- Assembled by hand.
- Water chamber lid design to recollect condensation.

	Cost	Durability	Bonding	Weight	Impact Resistance	Workability	Transmittance
Polycarbonate	\$\$\$	Strong (200x)	Easy	Light	Great	Easy	88%
Acrylic	\$\$	Strong (8x)	Easy	Light	Great	Easy	92%
Glass	\$	Easy to break	Difficult	Heavy	Poor	Hard	90%

Air Exchange Solution

- Mushrooms consume Oxygen and produce CO2.
- CO2 collects at bottom.
- CO2 must be pushed out with exhaust fan.
- Fresh Air is drawn in through opening in water chamber.

Air Exchange Component

- Controller schedules air exchanges periodically.
- User can define air exchange interval via web app.

Component	Cost	Size (mm)	Voltage (V)	Current (mA)	Noise (dBA)	Airflow (ft^3/min)
RDEXP 8025	\$6.55	80x80x25	5	300	25	18
Cooler Master Blade Master 80	\$18.32	80x80x25	12	200	28	40
GDSTIME B07MG	\$10.99	80x80x10	5	280	27	20

Sensor Solution

Component	Cost	Size (mm)	V	Current	Readings	Connectivity
Honeywell HIH-5031	\$27.27	9x4x3	2.7-5.5	200µA	Humidity	Analog Voltage
Texas Instruments TMP117	\$5.27	8x6x1	1.8-5.5	3.5µA	Temperature	I2C
MaxDetect RHT03	\$9.95	15x33x7.7	3.3	1.5mA	Temperature & Humidity	1-Wire Bus

Web Application Overview

- Our web app is mobile responsive and works on:
 - Computer
 - Tablet
 - Mobile device
- User can manually control the operation of the nursery.
- User can view sensor readings and mushroom profiles.

Web Application Solution

- React JS was chosen as the Web Framework.
- App interacts with the Web Server via a REST API.

	Angular	React	Vue
Size	566 KB	139 KB	58.8 KB
Large Community	Yes	Yes	No
Difficulty	Moderate	Easy	Easy
Setup time	Longer	Quick	Quick

Server & Database Solution

- Our server is based on Node.js, utilizing the express framework deployed on AWS via Heroku.
- Data is stored in a non-relational MongoDB database.
- Database is deployed on AWS via MongoDB Atlas.
- Server and Database are deployed in the same AWS region for reduced communication delay.

Successes

- In our testing environment we grew multiple oyster mushroom strains.
- In as short as 3 days, we grew large, great tasting mushrooms.
- Total we had over 2 pounds of mushrooms.
 - Ate most of them.
 - Dried some for later use.

Retrospective

- Learned from failed attempts.
- Humidity too low deformed fruit bodies.
- CO2 too high longer stems.
- Because of those failed attempts we focused a lot on the humidification & air exchange system.

Work Distribution

	PCB & Controller	App & Server	Housing	Sensors & Devices
Mardochee	Tertiary		Secondary	Primary
David	Primary	Tertiary		Secondary
John	Secondary	Primary	Tertiary	

Stretch Goals

#	Goal
1	Active temperature control, utilizing Peltier devices for heating & cooling along with insulated housing.
2	Precompiled Mushroom Grow Profiles that define humidity level, air exchange intervals and light intervals.
3	CO2 Sensor integration to trigger air exchange on demand.
4	Ability to view Snapshots or Video of Nursery on App.
5	App can communicate to nursery via bluetooth as well as WiFi.

Current Project Spend

SparkFun ESP8266 Thing	\$17.95	Peltier Devices	\$19.95
SparkFun Thing Plus - ESP32	\$20.95	CO2 Sensor	\$49.00
Break Away Headers	\$1.50	pH Sensor	\$19.95
ESP32 DEVKIT C Version 4	\$14.95	Humidity & Temp Sensor	\$9.95
PCB Components	\$18.41	LED Lights	\$25.98
Fans	\$15	Housing Materials & Tools	\$160.50
Ultrasonic Atomizer	\$6.99	Printing & Assembly of PCBs	\$123.40
Hosting	\$22.00	Total:	\$526.48

Thank you.

Any Questions?

Please feel free to contact us for more information.

John: johnfarriss@knights.ucf.edu Mardochee: mdccj101@knights.ucf.edu David: david_booth@knights.ucf.edu